Меню

Зарядное на однополупериодном выпрямителе. Схема, описание

Volkswagen

Очень часто возникает проблема с зарядкой автомобильного аккумулятора, при этом зарядное устройство под рукой не имеется, как же быть в этом случае. Сегодня я решил напечатать эту статью, где намерен пояснить все известные способы зарядки автомобильного аккумулятора, интересно правда. Поехали!

СПОСОБ ПЕРВЫЙ - ЛАМПА И ДИОД

Снимок13Это один из наиболее простых способов зарядки, поскольку «зарядное устройство» по идее состоит из двух компонентов - обыкновенной лампы накаливания и выпрямительного диода. Основной недостаток данной зарядки заключается в том, что диод срезает только нижний полупериод, следовательно на выходе устройства у нас не полностью постоянный ток, но зарядить таким током автомобильный аккумулятор можно!

Лампочка - самая обыкновенная, можно взять лампу 40/60/100 ватт, чем мощнее лампа, тем больше ток на выходе, по идее лампа тут только для токогашения.

Диод, как уже сказал для выпрямления переменного напряжения, он обязательно должен быть мощным, при этом должен быть рассчитан на обратное напряжение не менее 400 Вольт! Ток диода должен быть более 10А! это обязательное условие, очень советую диод установить на теплоотвод, возможно придется его дополнительно охлаждать.

И на рисунке вариант с одним диодом, правда в этом случае ток будет в 2 раза меньше, следовательно время зарядки увеличиться (со 150 Ватной лампочкой, подсевший аккумулятор достаточно зарядить 5-10 часов, чтобы завести автомобиль даже в мороз)

Для увеличения тока заряда можно лампу накаливания заменить другой, более мощной нагрузкой - обогреватель, кипятильник и т.п.

СПОСОБ ВТОРОЙ - КИПЯТИЛЬНИК

Этот способ работает по тому же принципу, что и первый, за исключением того, что на выходе данного зарядного устройство ток полностью постоянный.

Основная нагрузка - кипятильник, при желании можно заменить лампой, как в первом варианте.

Диодный мост можно взять готовый, который можно найти в компьютерных блоках питания. ОБЯЗАТЕЛЬНО использовать диодный мост с обратным напряжением не менее 400Вольт с током НЕ МЕНЕЕ 5 Ампер, готовый мост установить на теплоотвод, поскольку он будет довольно сильно перегреваться.

Мост можно также собрать из 4-х мощных выпрямительных диодов, при этом напряжение и ток диодов должен быть таким, как в случае использования моста. Вообще, старайтесь использовать мощный выпрямитель, на столько мощный, на сколько это возможно, лишняя мощность никогда не помешает.

НЕ ИСПОЛЬЗОВАТЬ мощные диодные сборки ШОТТКИ от компьютерных блоков питания, они очень мощные, но обратное напряжение этих диодов порядка 50-60 Вольт, поэтому они сгорят.

СПОСОБ ТРЕТИЙ - КОНДЕНСАТОР

Этот способ мне нравиться больше всех, использование гасящего конденсатора делает процесс заряда более безопасным, а из емкости конденсатора определяется ток заряда. Ток заряда легко определить по формуле

I = 2 * pi * f * C * U,

где U - напряжение в сети (Вольт), C - емкость гасящего конденсатора (мкФ), f - частота переменного тока (Гц)


Для зарядки автомобильного АКБ нужно иметь довольно большой ток (десятая часть емкости аккумулятора, например - для АКБ 60 А, ток заряда должен быть 6А), но для получения такого тока нам понадобиться целая батарея из конденсаторов, поэтому ограничимся током 1,3-1,4А, для этого, емкость конденсатора должна быть в районе 20мкФ.
Конденсатор обязательно нужен пленочный, с минимальным рабочим напряжением не менее 250 Вольт, отличный вариант конденсаторы типа МБГО отечественного производства.

Зарядное устройство 12в аккумулятора своими руками

Это зарядное устройство я сделал для зарядки автомобильных аккумуляторов, выходное напряжение 14.5 вольт, максимальный ток заряда 6 А. Но им можно заряжать и другие аккумуляторы, например литий-ионные, так как выходное напряжение и выходной ток можно регулировать в широких пределах. Основные компоненты зарядного устройства были куплены на сайте АлиЭкспресс.

Вот эти компоненты:

  • Диодный мост KBPC5010.

    Еще потребуется электролитический конденсатор 2200 мкФ на 50 В, трансформатор для зарядного устройства ТС-180-2 (как распаивать трансформатор ТС-180-2 посмотрите в этой статье), провода, сетевая вилка, предохранители, радиатор для диодного моста, крокодилы. Трансформатор можно использовать другой, мощностью не менее 150 Вт (для зарядного тока 6 А), вторичная обмотка должна быть рассчитана на ток 10 А и выдавать напряжение 15 – 20 вольт. Диодный мост можно набрать из отдельных диодов, рассчитанных на ток не менее 10А, например Д242А.

    Провода в зарядном устройстве должны быть толстые и короткие. Диодный мост нужно закрепить на большой радиатор. Необходимо нарастить радиаторы DC-DC преобразователя, или использовать для охлаждения вентилятор.

    Схема зарядного устройства для автомобильного аккумулятора

    Сборка зарядного устройства

    Подсоедините шнур с сетевой вилкой и предохранителем к первичной обмотке трансформатора ТС-180-2, установите диодный мост на радиатор, соедините диодный мост и вторичную обмотку трансформатора. Припаяйте конденсатор к плюсовому и минусовому выводам диодного моста.

    Подключите трансформатор к сети 220 вольт и произведите замеры напряжений мультиметром. У меня получились такие результаты:

    1. Переменное напряжение на выводах вторичной обмотки 14.3 вольта (напряжение в сети 228 вольт).
    2. Постоянное напряжение после диодного моста и конденсатора 18.4 вольта (без нагрузки).

    Руководствуясь схемой, соедините с диодным мостом DC-DC понижающий преобразователь и вольтамперметр.

    Настройка выходного напряжения и зарядного тока

    На плате DC-DC преобразователя установлены два подстроечных резистора, один позволяет установить максимальное выходное напряжение, другим можно выставить максимальный зарядный ток.

    Включите зарядное устройство в сеть (к выходным проводам ничего не подсоединено), индикатор будет показывать напряжение на выходе устройства, и ток равный нулю. Потенциометром напряжения установите на выходе 5 вольт. Замкните между собой выходные провода, потенциометром тока установите ток короткого замыкания 6 А. Затем устраните короткое замыкание, разъединив выходные провода и потенциометром напряжения, установите на выходе 14.5 вольт.

    Защита от переполюсовки

    Данное зарядное устройство не боится короткого замыкания на выходе, но при переполюсовке может выйти из строя. Для защиты от переполюсовки, в разрыв плюсового провода идущего к аккумулятору можно установить мощный диод Шоттки. Такие диоды имеют малое падение напряжения при прямом включении. С такой защитой, если перепутать полярность при подключении аккумулятора, ток протекать не будет. Правда этот диод нужно будет установить на радиатор, так как через него при заряде будет протекать большой ток.

    Подходящие диодные сборки применяются в компьютерных блоках питания. В такой сборке находятся два диода Шоттки с общим катодом, их нужно будет запараллелить. Для нашего зарядного устройства подойдут диоды с током не менее 15 А.

    Нужно учитывать, что в таких сборках катод соединен с корпусом, поэтому эти диоды нужно устанавливать на радиатор через изолирующую прокладку.

    Необходимо еще раз отрегулировать верхний предел напряжения, с учетом падения напряжения на диодах защиты. Для этого, потенциометром напряжения на плате DC-DC преобразователя нужно выставить 14.5 вольт измеряемых мультиметром непосредственно на выходных клеммах зарядного устройства.

    Как заряжать аккумулятор

    Протрите аккумулятор тряпицей смоченной в растворе соды, затем насухо. Выверните пробки и проконтролируйте уровень электролита, если необходимо, долейте дистиллированную воду. Пробки во время заряда должны быть вывернуты. Внутрь аккумулятора не должны попадать мусор и грязь. Помещение, в котором происходит заряд аккумулятора должно хорошо проветриваться.

    Подключите аккумулятор к зарядному устройству и включите устройство в сеть. Во время заряда напряжение будет постепенно расти до 14.5 вольт, ток будет со временем уменьшаться. Аккумулятор можно условно считать заряженным, когда зарядный ток упадет до 0.6 – 0.7 А.

    Зарядное устройство для автомобиля

    Внимание! Схема данного ЗУ предназначена для быстрой зарядки вашего аккумулятора в критических случаях, когда надо срочно куда-то ехать через 2-3 часа. Не используйте ее для повседневного обращения, так как заряд идет постоянным напряжением, что не самый лучший режим зарядки для вашего акума. При перезаряде начинает «кипеть» электролит и в окружающее пространство начинают выделяться ядовитые пары.

    Однажды в студеную зимнюю пору

    Я из дому вышел, был сильный мороз!

    Сажусь я в машину и ключик вставляю

    Машина не с места

    Ведь акум то сдох!

    Знакомая ситуация, не так ли? 😉 Думаю, все автолюбители попадали в такую неприятную ситуацию. Есть два выхода: завести машину с заряженного акума соседской машины (если сосед не против), на жаргоне автолюбителей это звучит как «прикурить». Ну и второй выход — это зарядить акум. Зарядные устройства стоят не очень то и дешево. Их цена начинается с 1000 рублей. Если у вас жмет карман от денег, то проблема решена. Когда я попал в такую ситуацию, когда машина не завелась, то понял, что мне срочно нужно зарядное устройство. Но у меня не было лишней тысячи рублей на покупку зарядного устройства. В инете нашел очень простую схему, и решил собрать зарядник собственными силами. Схему трансформатора я упростил. Обмотки со второй колонны обозначаются со штрихом.

    F1 и F2 — это плавкие предохранители. F2 нужен для защиты от короткого замыкания на выходе цепи, а F1 — от превышении напряжения в сети.

    И вот что у меня получилось.

    Теперь обо всем по порядку. Силовой трансформатор марки ТС-160 можно и ТС-180 можно выдергнуть со старых черно-белых телевизоров «Рекорд», но такового я не нашел и пошел в радиомагаз. Давайте разглядим его поближе.

    Лепестки. куда паяются выводы обмоток транса.

    А вот здесь прямо на трансе есть табличка, на каких лепестках какое напряжение выходит. Это значит, что при подаче на лепесток № 1 и 8 подать 220 Вольт, то на лепестках №3 и 6 мы получим 33 Вольта и максимальную силу тока в нагрузку 0,33 Ампера и тд. Но нас больше всего интересуют обмотки №13 и 14. На них мы можем получить 6,55 Вольт и максимальную силу тока 7,5 Ампер.

    Для того, чтобы заряжать аккумулятор нам как раз потребуется большая сила тока. Но напряжение то у нас маленькое. Акум выдает 12 Вольт, но для того, чтобы его зарядить, напряжение зарядки должно превышать напряжение акума. 6,55 Вольт здесь никак не сгодится. Зарядник нам должен выдавать 13-16 Вольт. Поэтому мы прибегаем к очень хитрому решению. Как вы заметили, транс состоит из двух колон. Каждая колонна дублирует другую колонну. Места, где выходят выводы обмоток, пронумерованы. Для того, чтобы увеличить напряжение, нам нужно просто-напросто соединить два источника напряжения последовательно. Для этого соединяем обмотки 13 и 13′ и снимаем напряжение с обмоток 14 и 14′. 6,55 + 6,55 = 13,1 Вольт. Вот такое переменное напряжение мы получим. Теперь нам надо его выпрямить, то есть превратить в постоянный ток. Собираем Диодный мост на мощных диодах, потому как через них будет проходить приличная сила тока. Для этого нам потребуются диоды Д242А. Через них может течь прямой ток до 10 Ампер, что идеально подходит к нашему самопальному заряднику:-). Также можно отдельно купить диодный мост сразу модулем. В самый раз подойдет диодный мост КВРС5010, который можно купить на Али по этой ссылке или в ближайшем радиомагазине.

    Как проверить диоды на работоспособность, думаю помнят все, кто не помнит — сюда.

    Немного теории. Полностью посаженный акум обладает низким напряжением. По мере зарядки напряжение стает все больше и больше. Следовательно по Закону Ома у нас сила тока в цепи в самом начале зарядки будет очень большая, а потом все меньше и меньше. А так как диоды включены в цепь, то и через них будет проходить большая сила тока в самом начале зарядки. Согласно Закону Джоуля-Ленца будет происходить нагрев диодов. Поэтому, чтобы их не спалить, нужно отнимать от них тепло и рассеивать в окружающем пространстве. Для этого нам нужны радиаторы. В качестве радиатора я раздраконил нерабочий комповский блок питания и использовал его жестяной корпус.

    Не забудьте подключить амперметр последовательно нагрузке. Мой амперметр без шунта. поэтому все показания я делю на 10.

    Зачем нам амперметр? Для того, чтобы узнать, зарядился ли наш акум или нет. Когда акум полностью разряжен, он начинает жрать (слово «кушать» думаю здесь неуместно) ток. Жрет он порядка 4-5 Ампер. По мере зарядки он кушает все меньше и меньше силы тока. Поэтому, когда стрелка прибора покажет на 1 Ампер (в моем случае на шкале 10), то акум можно считать заряженным. Все гениально и просто:-).

    Выводим две зацеплялки для клемм акума с нашего зарядника, в нашем магазе радио они стоят 6 руб за штуку, но я советую взять покачественнее, так как эти быстро ломаются. При зарядке не путайте полярность. Лучше как-нибудь пометить зацеплялки или взять разных цветов.

    Если все правильно собрано, то на зацеплялках мы должны увидеть вот такую форму сигнала (по идее верхушки должны быть сглажены, так как синусоида). но разве что-то предъявишь нашему провайдеру электричества))). В первый раз видите что-то подобное? Бегом сюда!

    Импульсы постоянного напряжения лучше заряжают акум, чем чистый постоянный ток. А как получить чистый постоянный из переменного описано в статье Как получить из переменного напряжения постоянное.

    Ниже на фото акум почти уже заряжен. Замеряем его потребляемую силу тока. 1,43 Ампера.

    Оставим еще чуток на зарядку

    Не поленитсь доработать свое устройство плавкими предохранителями. Номиналы предохранителей на схеме. Так как транс такого рода считается силовым, то при замыкании вторичной обмотки, которую мы вывели на зарядку акума, сила тока будет бешенной и возникнет так называемое Короткое замыкание. У Вас махом начнет плавиться изоляция и даже провода, что может привести к печальным последствиям. Не проверяйте на искру напряжение на зацеплялках зарядника. По возможности не оставляйте без присмотра сей девайс. Ну да, дешево и сердито;-). Можно при большом желании доработать этот зарядник. Поставить защиту от КЗ, самовыключение при полной зарядке акума и тд. По себестоимости такой зардяник получился на 300 руб и 5 часов свободного времени на сборку. Зато теперь даже в самый лютый мороз можно спокойно завести машинку с полностью заряженным акумом.

    Тех, кого заинтересовала теория зарядных устройств (ЗУ), а также схемы нормальных ЗУ, то в обязательном порядке качаем эту книжку по этой ссылке. Ее можно назвать библией по зарядным устройствам.

    Читайте также на сайте:

  • Солнечные контроллеры
  • Магниты
  • DC Ваттметры
  • Инверторы
  • Контроллеры для ВГ
  • Мой небольшой опыт
  • Разные мои самоделки
  • Расчёт и изготовление лопастей
  • Изготовление генераторов
  • Готовые расчёты ветряков
  • Дисковые аксиальные ветряки
  • Из асинхронных двигателей
  • Ветряки из авто-генераторов
  • Вертикальные ветряки
  • Парусные ветрогенераторы
  • Самодельные солнечные панели
  • Аккумуляторы
  • Контроллеры инверторы
  • Альтернативное эл. статьи
  • Личный опыт людей
  • Ветрогенераторы Ян Корепанов
  • Ответы на вопросы

    Особенности работы моего ветрогенератора

    Анемометр — измеритель скорости ветра

    Сколько энергии дают солнечные батареи 400Вт

    Контроллер ФОТОН 150-50

    Попытка восстановления клеммы аккумулятора

    Защита аккумулятора от глубоких разрядов

    Контроллер фотон как DC-DC преобразователь

    Автоматы защиты от КЗ в солнечной электростанции

    Модернизация и обновление электростанции весна 2017

    ИБП CyberPower CPS 600 E бесперебойник с чистым синусом

    Устройство плавного пуска, запуск холодильника от инвертора

    Где я покупаю неодимовые магниты

    Состав и устройство моей солнечной электростанции

    Сколько нужно солнечных батарей для холодильника?

    Выгодны ли солнечные батареи?

    Ветрогенератор на основе асинхронного двигателя с деревянным винтом

    Подборка ваттметров постоянного тока с алиэкспресс

  • Главная
  • Контроллеры инверторы и другая электроника

    Как сделать диодный мост

    Как сделать диодный мост для преобразования переменного напряжения в постоянное, однофазный и трехфазный диодный мост. Ниже классическая схема однофазного диодного моста.

    Как видно на рисунке соединены четыре диода, на вход подается переменное напряжение, а на выходе уже плюс и минус. Сам диод это полупроводниковый элемент, который может через себя пропускать только напряжение с определенным значением. В одну сторону диод может пропускать через себя только минусовое напряжение, а плюс не может, а в обратную наоборот. Ниже диод и его обозначение в схемах. Через анод может пропускаться только минус, а через катод только плюс.

    Переменное напряжение это такое напряжение где с определенной частотой меняется плюс с минусом. Например частота нашей сети 220вольт равна 50герц, то-есть 50 раз за секунду меняется полярность напряжения с минуса на плюс и обратно. Чтобы выпрямить напряжение, направить плюс на один провод, а плюс на другой нужны два диода. Один подключаетя анодом, второй катодом, таким образом когда на проводе появляется минус, то он идет по первому диоду, а второй минус не пропускает, а когда на проводе появится плюс, то наоборот первый диод плюс не пропускает, а второй пропускает. Ниже схема принципа работы.

    Для выпрямления, а точнее распределения плюса и минуса в переменном напряжении нужны всего два диода на один провод. Если провода два то соответственно по два диода на провод, всего четыре и схема соединения выглядит ромбиком. Если три провода, то шесть диодов, по два на провод и того получится трехфазный диодный мост. Ниже схема соединения трехфазного диодного моста.

    Диодный мост как видно из картинок очень прост, это простейшее устройство для преобразования переменного напряжения от трансформаторов или генераторов в постоянное. Переменное напряжение имеет частоту смены напряжения с плюса на минус и обратно, поэтому эти пульсации передаются и после диодного моста. Чтобы сгладить пульсации если это нужно ставят конденсатор. Конденсатор ставят параллельно, то-есть одним концом к плюсу на выходе, а вторым концом к плюсу. Конденсатор здесь служит как миниатюрный аккумулятор. Он заряжается и во время паузы между импульсами питает нагрузку разряжаясь, таким образом пульсации становятся незаметными, и если вы подсоединяете например светодиод, то он не будет мерцать и в другая электроника будет правильно работать. Ниже схема с конденсатором.

    Также хочу отметить что напряжение пропущенное через диод немного понижается, для диода Шоттки это около 0,3-0,4вольта. Таким образом можно диодами понижать напряжение, скажем 10 последовательно соединенных диодов понизят напряжение на 3-4вольта. Нагреваются диоды именно из-за падения напряжения, скажем через диод идет ток силой 2ампера, падение 0,4вольта, 0,4*2=0,8ватт, таким образом на тепло уходит 0,8ватт энергии. А если 20ампер пойдет через мощный диод, то потери на нагрев будут уже 8ватт.

  • Готовые расчёты ВГ
  • Информация для Расчёта ВГ
  • Аксиальные ВГ
  • Из асинхронных дв
  • Из авто-генераторов
  • Вертикальные ВГ
  • Парусные ВГ
  • Самодельные СБ
  • Аккумуляторы
  • Контроллеры
  • Опыт людей
  • Мой небольшой опыт
  • Альтернативное эл.
  • Разные мои самоделки
  • Ответы на вопросы
  • Ветрогенераторы Ян Корепанов
  • Магазин
  • Ответы на вопросы
  • Контакты и отзывы
  • Видео
  • О сайте
  • Сайты по теме

    Е-ветерок.ру Ветрогенератор своими руками
    Энергия ветра и солнца — 2013г. Контакты: Google+ / Вконтакте

    Лада Приора Хэтчбек Ракета › Бортжурнал › Зарядное устройство своими руками

    Купил сегодня тестер и сел паять зарядник из останков сабвуфера раскуроченого ранее. Немного теории для тех кто решит повторить. Зарядное устройство. Он же блок питания по сути состоит из двух модулей. Первый это трансформатор, его задача понизить напряжение до необходимых в нашем случает 12 вольт. Второй это диодный мост, нужен он для того чтоб переменное напряжение преобразовать в постоянное. Можно конечно все усложнить и наставить всяких фильтров лампочек и приборов. Но мы этого делать не будем ибо лень.

    Берем трансформатор. Первое что нам нужно найти первичную обмотку. На нее мы будет подавать 220 в из розетки. Ставим тестер в режим измерения сопротивления. И прозванивает все провода. Находим ту пару которая дает самое большее сопротивление. Это и есть первичная обмотка. Далее прозваниваем остальные пары и запоминаем/записываем что с чем звонилось.

    После того как нашли все пары подаем на первичную обмотку 220 в. Переводим тестер в режим измерения переменного напряжения и меряем сколько вольт на вторичных обмотках. В моем случае на всех парах было 12 в. Взял одну с самыми толстыми проводами остальные обрезал и заизолировал

    с этим закончили переходим к диодному мосту.

    Выпаял из платы сабвуфера 4 диода

    скрутил вместе в диодный мост и пропаял соединения

    Схема диодного моста и график изменения структуры синусоиды

    вот что получилось у меня

    осталось все соединить и проверить на работоспособность

    То что получилось у меня

    Включаем в сеть замеряем напряжение. Слева относительно последнего фото на диодном мосту будет минус. Справа плюс. Напаеваем туда провода которые в дальнейшем будем сажать на плюс и минус нашего акб.

    Один из проводов на акб желательно пустить через лампочку чтоб убереч акб от передоза электричества

    Вот что получилось в итоге

    И последнее испытание с подключенной светодиодной лентой

  • Длительное хранение или эксплуатация автомобильных аккумуляторов приводит к возникновению на пластинах и на клеммах кристаллического сульфата свинца. При отсутствии контакта клеммы можно почистить напильником с крупной насечкой или наждачной бумагой, а вот очистить пластины таким методом невозможно.

    Нагрузка на аккумулятор во время заводки автомобиля составляет 120-150 ампер, то есть почти 1,5 киловатта и зависит от состояния двигателя.

    Из-за внутреннего сопротивления, созданного плохой проводимостью кристаллов сульфата свинца, автомашина, возможно, и заведётся но не более одного раза, снижается напряжение на клеммах аккумулятора, при подключении нагрузки - ниже допустимых пределов, стартер при таком напряжении источника тока не в состоянии провернуть вал двигателя.

    Надеяться, что аккумулятор зарядится в пути при таком состоянии пластин нереально.

    Если рассматривать генератор автомобиля как источник питания, зарядить аккумулятор возможно, а вот снять «застаревшую» кристаллизацию пластин он не в состоянии.

    Поверхностная (рабочая) сульфатация пластин снимается при рабочем напряжении зарядки аккумулятора в 13,8-14,2 Вольт, а внутренняя кристаллизация пористой структуры пластин на такое напряжение слабо реагирует из-за высокого сопротивления кристаллов сульфата свинца и низкого напряжения заряда.

    Для восстановления пластин - снятия кристаллизации требуется нестандартное напряжение источника тока заряда.

    Добавлять напряжение генератора ни в коем случае нельзя - из-за опасности повреждения электрического и электронного оборудования автомобиля нестандартным напряжением, это иногда случается при повреждении реле-регулятора напряжения.
    Выход прост -зарядить аккумулятор внешним зарядным устройством с повышенным напряжением источника.

    Средний ток заряда при снятии сульфатации пластин не превышает рекомендуемый для заряда заводом - изготовителем, а напряжение заряда в импульсе превышает стандартное почти в половину. Время импульса невелико и такая зарядка с восстановлением не приводит к излишнему нагреву аккумулятора, и короблению пластин.

    Двухполярное восстановление пластин позволяет продлить срок эксплуатации аккумулятора и поддержать его рабочее состояние. Повышенное напряжение источника зарядного тока позволяет передать в импульсе мощность, достаточную, для расплавления и перевода кристалла сульфата свинца в аморфный свинец.

    Устранение крупнокристаллической сульфатации элементов аккумулятора, снижает внутреннее сопротивление до рабочего состояния, устраняется саморазряд и межэлектродные замыкания, повышается напряжение под нагрузкой, что облегчает запуск автомобиля.

    Предлагаемая схема позволяет выполнить эти условия с небольшими затратами из радиодеталей используемых от отслуживших свой срок электронных приборов.

    Характеристики устройства:
    1. Напряжение сети 210- 230 вольт.
    2. Мощность трансформатора 50-100 ватт
    3. Напряжение аккумуляторов 6/12 вольт.
    4. Ток заряда макс. средний 1 ампер
    5. Ток разряда 12 мА.
    6. Ток заряда импульсный макс. 3 ампера
    7. Время восстановления 6- 18 часов.
    8. Аккумулятор: а) открытого типа;б) закрытого типа; в) гелиевый.
    9. Ёмкость аккумулятора от 2 до 100 А/час.
    Зарядное устройство не предназначено для питания радиоэлектронных устройств.

    Принципиальная схема зарядного устройства состоит из силового трансформатора Т2 и защиты от перегрузки FU1.Снижение помех коммутации достигается введением фильтра на двухзвенном трансформаторе Т1 и конденсаторах С1,С2.

    Выходная обмотка трансформатора подключена одним выводом - через зарядный тиристор VD1, к минусовой шине аккумулятора GB1, вторым выводом - через прибор контроля зарядного тока PA1, к плюсу аккумулятора.. Выпрямитель импульсного тока обратной полярности -VD2 подаёт в аккумулятор GB1 разрядный ток ограниченный резистором R3. Двухполярный ток облегчает восстановление пластин аккумулятора и защищает трансформатор T1 от перемагничивания железа, как в случае однополярного тока. Выпрямитель импульсного тока восстановления выполнен на одном диоде VD2, что ведёт к ускоренному восстановлению пластин аккумулятора, снижению нагрева как в с использованием моста из четырёх диодов. Диодные мосты, используемые в заводских зарядных устройствах, из-за отсутствия временного разрыва между импульсами зарядного тока не позволяют вести рекристаллизацию пластин, что приводит к преждевременному электролизу электролита, кипению и нагреву аккумулятора. При использовании аккумуляторов с гелиевым наполнителем или отсутствием воздушных пробок (закрытого типа) - это недопустимо, из-за возможной разгерметизации корпуса.

    Однополупериодная импульсная схема восстановления, в данном случае с регулятором тока на тиристоре, с перерывами между импульсами равными по времени периоду положительного импульса тока, снижает температуру электролита и увеличивает время на рекомбинацию (перестроение) ионов электролита.

    Регулирование тока происходи за счёт изменения времени заряда конденсатора С3, резистором R1. Контроль зарядного тока выполнен на гальваническом приборе РА1 с внутренним шунтом.

    Аккумулятор подключается к зарядному устройству с помощью зажимов типа «Крокодил». Восстановление аккумулятора возможно производить без снятия с автомобиля, предварительно положительную клемму питания автомобиля отключить.

    Детали устройства

    В схеме зарядного устройства отсутствуют покупные радиодетали.
    Силовой трансформатор Т1 использован от ламповых радиоприёмников:железо предварительно разбирается, сетевая обмотка используется без изменений, повышающая и накальная аккуратно удаляются послойно - перекусыванием кусачками витков, вместо них наматывается проводом сечением 0,5мм -0,6 мм обмотка до заполнения с отводом (примерно) от середины, количество витков новой вторичной обмотки 2х 9 вольт переменного тока должна соответствовать виткам удалённой обмотки накала ламп на 6,3 вольта.. Далее проводится обратная сборка железа, несколько листов ш- образного железа не войдут - это не повлияет на характеристики трансформатора. При подключенном сетевом напряжении вторичное напряжение на отводах должно быть в пределах 2х 18вольт.
    Заводской трансформатор типа ТПП243 или ТН.

    Коммутационный переключатель SA1 использован от сетевых тумблеров на ток в 3 ампера.
    Конденсатор С1 типа К17 с напряжением 250 - 400Вольт.
    Светодиод индикации HL1 допустимо установить любого свечения.

    При отсутствии в наличии амперметра указанного тока, используется любой гальванометр от магнитофонов (индикация выходного сигнала), поскольку обмотка такого прибора не выдержит ток заряда, параллельно выводам прибора подключается шунт состоящий из 5-8 витков провода сечением 0,6-1,0 мм. В разрыв положительной шины зарядного тока подключается временно тестер и сверяются показания зарядного тока. Количество витков обмотки шунта необходимо подогнать по показаниям действующего амперметра.

    Зарядка аккумулятора
    Наличие амперметра позволяет отследить процесс рекристаллизации пластин - в начальный момент ток заряда имеет минимальное значение, далее по мере очистки пластин электродов аккумулятора от кристаллизации, ток возрастёт до максимального значения, и через время, определяемое состоянием аккумулятора, ток начнёт падать практически до нулевого значения, что и будет индикацией окончания времени восстановления аккумулятора.

    При отсутствии гальванометра ток заряда можно проверить тестером и при удовлетворительных показателях установить в разрыв перемычку.

    При неверной полярности подключения аккумулятора GB1 светодиод гореть не будет, стрелка амперметра повернётся влево - на разряд. Длительно, в неверном подключении, аккумулятор держать нельзя, незаряженное состояние может привести к переполюсовке электродов и полной невозможности дальнейшего использования.

    После нескольких часов восстановления ёмкости аккумулятора элементы схемы проверяются на нагрев, при удовлетворительных результатах восстановление продолжают.

    Ввиду небольшого количества элементов схема собрана в корпусе от блока питания компьютера или типа БП-1 навесным монтажом с установкой тумблеров SA1, светодиода HL1, высокочастотного гальванометра РА1 типа Т210-М1 на передней панели. Предохранитель FU1 крепится на задней стенке, переменный резистор типа СП-3.

    Соединение зарядного устройства с аккумулятором выполнено многожильным проводом в виниловой изоляции сечением 2,5мм с зажимами типа «крокодил» на концах.

    По окончании зарядки в первую очередь отключается сеть, затем снимаются зажимы с клемм аккумулятора.

    Трансформатор допустимо установить заводской, мощностью 70-120 ватт типа ТПП, ТН, ТС. Вторичная обмотка используется на напряжение 15-18 Вольт для зарядки аккумуляторов для зарядки аккумуляторов 6-12 вольт.

    Если аккумулятор не имел сбоев в работе, желательно провести профилактику, к примеру при стоянке на даче подключить на ночь. Основное требование при эксплуатации зарядных устройств - правильная полярность подключения. Недопустимо закрывать вентиляционные устройства корпуса. Внешний вид зарядного устройства во включенном состоянии указано на фотографии зарядного устройства.

    Список радиоэлементов

    Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
    VD1 Тиристор Т122-25 1 В блокнот
    VD2 Диод

    КД226Б

    1 В блокнот
    HL1 Светодиод

    АЛ307БМ

    1 В блокнот
    R1 Переменный резистор 3.3 кОм 1 В блокнот
    R2 Резистор

    20 Ом

    1 1 Ватт В блокнот
    R3 Резистор

    910 Ом

    1 1 Ватт В блокнот
    R4 Резистор

    3.3 кОм

    1 1 Ватт В блокнот
    C1, C2 Конденсатор 0.01 мкФ 2

    Сейчас нет смысла собирать самостоятельно зарядное устройство для автомобильных аккумуляторов: в магазинах огромный выбор готовых устройств, цены на них приемлемы. Однако не будем забывать о том, что приятно что-то сделать полезное своими руками, тем более что простое зарядное устройство для автомобильного аккумулятора вполне можно собрать из подручных деталей, и цена его будет копеечной.

    Единственное, о чем сразу стоит предупредить: схемы без точной регулировки тока и напряжения на выходе, которые не имеют отсечки тока по окончании заряда, пригодны для зарядки только свинцово-кислотных аккумуляторов. Для AGM и использование подобных зарядок приводит к повреждению аккумуляторной батареи!

    Как сделать простейшее трансформаторное устройство

    Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа.

    По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства. Диодный мост берётся любой с прямым током более 5 ампер или собрать его из четырех отдельных диодов, с теми же требованиями к току подбирается и измерительный амперметр. Главное – разместить его на радиаторе, который в простейшем случае представляет собой алюминиевую пластину не менее 25 см2 площадью.

    Примитивность такого устройства – не только минус: за счет того, что у него нет ни регулировки, ни автоматического отключения, оно может использоваться для «реанимации» сульфатированных аккумуляторов. Но не нужно забывать и об отсутствии защиты от переполюсовки в этой схеме.

    Главная проблема – где найти трансформатор подходящей мощности (не менее 60 Вт) и с заданным напряжением. Можно использовать, если подвернется советский накальный трансформатор. Однако его выходные обмотки имеют напряжение 6,3В, поэтому придется соединять две последовательно, одну из них отмотав так, чтобы в сумме на выходе получить 10В. Подойдет недорогой трансформатор ТП207-3, у которого вторичные обмотки соединяются следующим образом:

    Отматываем при этом обмотку между клеммами 7-8.

    Простое зарядное устройство с электронной регулировкой

    Однако можно обойтись и без отмотки, дополнив схему электронным стабилизатором напряжения на выходе. К тому же такая схема будет удобнее в гаражном применении, так как позволит скорректировать ток заряда при просадках напряжения питания, ее используют и для автомобильных аккумуляторов небольшой емкости при необходимости.

    Роль регулятора здесь выполняет составной транзистор КТ837-КТ814, переменный резистор регулирует ток на выходе устройства. При сборке зарядки стабилитрон 1N754A можно заменить советским Д814А.

    Схема регулируемого зарядного устройства проста для повторения, и легко собирается навесным монтажом без необходимости в травлении печатной платы. Однако учтите, что полевые транзисторы размещаются на радиаторе, нагрев которого будет ощутим. Удобнее воспользоваться старым компьютерным кулером, подключив его вентилятор к выходам зарядного устройства. Резистор R1 должен иметь мощность не менее 5 Вт, его проще намотать из нихрома или фехраля самостоятельно или соединить параллельно 10 одноваттных резисторов по 10 ом. Его можно и не ставить, но нельзя забывать, что он защищает транзисторы в случае замыкания выводов.

    При выборе трансформатора ориентируйтесь на выходное напряжение 12,6-16В, берите либо накальный трансформатор, соединив последовательно две обмотки, либо подбирайте готовую модель с нужным напряжением.

    Видео: Самое простое зарядное устройство для АКБ

    Переделка зарядного устройства от ноутбука

    Однако можно обойтись и без поисков трансформатора, если под руками есть ненужное зарядное устройство от ноутбука – при простой переделке мы получим компактный и легкий импульсный блок питания, способный заряжать автомобильные аккумуляторы. Поскольку нам потребуется получить напряжение на выходе 14,1-14,3 В, ни один готовый блок питания не подойдет, однако переделка проста.
    Посмотрим на участок типовой схемы, по которой собраны устройства такого рода:

    В них поддержание стабилизированного напряжения осуществляет цепь из микросхемы TL431, управляющей оптопарой (на схеме не показана): как только напряжение на выходе превышает значение, которое задают резисторы R13 и R12, микросхема зажигает светодиод оптопары, сообщает ШИМ-контроллеру преобразователя сигнал на снижение скважности подаваемых на трансформатор импульсов. Сложно? На самом деле все просто смастерить своими руками.

    Вскрыв зарядное устройство, находим недалеко от выходного разъема TL431 и два резистора, связанные с ножкой Ref. Удобнее настраивать верхнее плечо делителя (на схеме – резистор R13): уменьшая сопротивление, мы уменьшаем и напряжение на выходе зарядного устройства, увеличивая – поднимаем его. Если у нас ЗУ на 12 В, нам понадобится резистор с большим сопротивлением, если зарядное на 19 В – то с меньшим.

    Видео: Зарядка для аккумуляторов авто. Защита от короткого замыкания и переполюсовки. Своими руками

    Выпаиваем резистор и вместо него устанавливаем подстроечный, заранее настроенный по мультиметру на то же сопротивление. Затем, подключив к выходу зарядного устройства нагрузку (лампочку из фары), включаем в сеть и плавно вращаем движок подстроечника, одновременно контролируя напряжение. Как только мы получим напряжение в пределах 14,1-14,3 В, отключаем ЗУ из сети, фиксируем движок подстроечного резистора лаком (хотя бы для ногтей) и собираем корпус обратно. Это займет не больше времени, чем Вы потратили на чтение этой статьи.

    Есть и более сложные схемы стабилизации, причем их уже можно встретить и в китайских блоках. Например, здесь оптопарой управляет микросхема TEA1761:

    Однако принцип настройки тот же: меняется сопротивление резистора, впаянного между плюсовым выходом блока питания и 6 ножкой микросхемы. На приведенной схеме для этого использованы два запараллеленных резистора (таким образом получено сопротивление, выходящее из стандартного ряда). Нам нужно так же впаять вместо них подстроечник и настроить выход на нужное напряжение. Вот пример одной из таких плат:

    Путем прозвонки можно понять, что нас интересует на этой плате одиночный резистор R32 (обведен красным) – его нам и надо выпаивать.

    В Интернете часто встречаются похожие рекомендации, как сделать самодельное зарядное устройство из компьютерного блока питания. Но учитывайте, что все они по сути – перепечатки старых статей начала двухтысячных, и подобные рекомендации к более-менее современным блокам питания неприменимы. В них уже нельзя просто поднять напряжение 12 В до нужной величины, так как контролируются и другие напряжения на выходе, а они неизбежно «уплывут» при такой настройке, и сработает защита блока питания. Можно использовать зарядные устройства ноутбуков, выдающие единственное напряжение на выходе, они гораздо удобнее для переделки.

    В начале сего проекта, как и любого стоящего дела, было слово – в виде широко известной статьи «Зарядное на однополупериодном выпрямителе». Дело же началось после того, как в моем распоряжении оказался подходящий понижающий трансформатор.

    Как видно из фотографии, выходное напряжение и мощность трансформатора идеально подходят для реализации схемы, а наличие дополнительных отводов во вторичной обмотке значительно расширили возможности устройства.

    Перво-наперво был решен вопрос подключения первичной обмотки. Для этого был использован пластиковый бокс для автоматических выключателей серии ВА47; в дне бокса были сделаны дополнительные отверстия под контактные винты. Крепление к крышке трансформатора – с помощью двух саморезов. В качестве элемента защиты – все тот же ВА47-29 на ток 1А, конденсатор С1 также расположился внутри бокса.

    «Низкая сторона» выпрямителя смонтирована на каркасе, собранного из куска ламината и двух полосок жести; сверху крепится к трансформатору штатными ботами, снизу – двумя саморезами.

    К сожалению, у меня не нашлось более подходящего амперметра, чем грубый автомобильный гальванометр со средней точкой:

    Однако, как показала практика, его вполне достаточно для того, чтобы приблизительно судить о зарядном токе. В случае необходимости всегда можно подключить более точный выносной амперметр.

    Переключатель в положении «Б» обеспечивает максимальный ток, что соответствует параметрам зарядки 12-вольтовых автомобильных аккумуляторов. В положении «М» можно использовать любое из оставшихся трех напряжений вторичной обмотки, достаточно перекинуть провода на нужные контакты.

    В принципе, можно было и вовсе обойтись без переключателя, но, переделывать готовую конструкцию я не стал.

    В особых случаях для подстройки тока параллельно цепи минусового провода был подключен резистор ПЭВ на номинал 22 Ома с возможностью регулировки сопротивления и выведен на отдельную клемму «Р».

    Правда, пользоваться пока что им не приходилось: имеющихся диапазонов напряжений мне вполне хватает не только для подзарядки автоаккумулятора, но и для регенерации, скажем, батарей шуруповерта и шахтерского фонаря. Ручка была сделана уже под занавес из первого попавшегося под руку «стройматериала».